Abstract
The $olutions to the problem of the near earth Satelhte without
drag obtained by applying the von Zeipel method and the modified
Hansen method are compared. Differences in the arbitrary constants

are tabulated. Transformations are also given relating the time ele-
ment of the two theories.
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Comparison of von Zeipel and Modified Hansen Mathods of Satellite Theories

Widely different theories are often used in the computation of
orbits of artificial satellites. It is of interest to examine the results
of different theories when they are applied to the basic problem of the
near earth satellite without drag. Of special importance are the major
theories of celestial rr;echanics introduced by Brouwer (1959) and by

Musen {(1959), (1961) in solving this problem.‘

Brouwer (1959) applied the method of von Zeipel to the near earth
satellite problem and obtained analytic representations for the osculat-
ing Delaunay and Keplerian elements. The results are given by Brouwer
to order J,, in the elements and J220 in the mean rhotions, where J,ois
the coefficient of the second zonal harmonic of the earth's potential.

| Musen (1959), (1961) on the other hand, first modified Hansen's method,
then by applying it to the same problem of the near earth satellite
vﬁthout drag, showed how to obtain the positioh of the satellite in a
semi-analytic manner to any pfe;scribed order of J,, . @‘he solution of
the satellite problem in terms of orbital true longitude by Musen (1961)

is considered below.

The results obtained by Brouwer are given in a form convenient

ozai (1959)
aLAea \ =~ s~ 7

Garfinkel (1959) and others have been able to réadily compare their

solutions of the satellite problem with Brouwer's solution. However,
since Musen's formulations of the problem are intended to provide
numerical results of high precision for the position of a satellite, 2
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explicit analytic formulations of the perturbations of the elements do not
appear in his articles. Consequently, formulas are given below for ele-
ments derived from the modified Hansen theory in terms of orbital true

longitude so that the results of both authors can be compared.

As one would expect, the differences of the two theories are ex-
hibited in the respective choices of the arbitrary constants and in the
arguments of the trigonometric terms. The constants of both theories
are discussed and presented in tabular form. The tfansformations of
the variables of the angular arguments are presented. Therefore, when
the solutions to the satellite problem are carried out to the same order
in J,, by the methods of Brouwer and Musen, full cérrespondence can
be obtained by taking into account the differences in the constants and

the angular variables.

The Osculating Elements

The definitions of the osculating elements appearing in Brouwer's
article may be found in any text o:'n celestial mechanics, for example,
Brouwer and Clemence (1961). It is a relatively simple matter to find
expressions for the osculating elements of the rx;xodified Hansen theory
when expressed in terms of orbital true longitude. These formulas
differ from the corresponding formulas of the modified Hansen theory
in terms of eccentric anomaly given by Bailie and Bryant (1960) si.nce
the W functions differ slightly. We no§v review briefly some of the

concepts and definitions of the modified Hansen theory expressed in




terms of orbital true longitude to indicate how representations of

osculating elements are derived.

Definitions From the Modified Hansen Theory

When the differential equations given in Musen's article are solved,
expressions for the components of the W functionZ, T, and ¥, the A param-

eters and the perturbation of the pseudo-~-time r,‘,o §z result.

The functions=, T, and ¥ are expressed in terms of orbital true

longitude and are related to osculating elements by the formulas;

= h hy
h,
T = 23" ecos¢p = \1+ /e, (1
h .
Yy = 2‘5‘; esing¢g

Here - ¢is the deviation of the osculating true anomaly from the true
anomaly of the auxiliary ellipse, e the osculating eccentricity, and h is

. / .
proportional to the reciprocal of the Delaunay variable G, that is
- '
G = § - (2)

The quantities h, and ¢, are elements of Hansen's auxilary ellipse and

are constants. . 4
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The A parameters are defined by the formulas;

i 1
>\1 = sin % cos N Ka = cos 3 sinkK
i i (3)
: }\2 = sin 3 sinN 7\4 = cos 3 cos K

Here i is the osculating angle of inclination of the orbit plane and cor-
responds to Iin Brouwer's development. The quantities K and N are
Fourier series of the order of the perturbations and do not contain

secular terms.

The angular variables are given by the formulas;

f = cv-my,-¢

€
1

(g-clv +(m,=6,) +¢ +K+N (4)

5
n

(1-h')v+6, +K=~N

The quantifies f,w, and 6 are the osculating true anomaly, argument
Q'f perigee and longitude of the node. The quantitiesg,c, and h’ in the
right hand side of equations (4) are proportional to the mean motions
of the argument of latitude, mean anomaly, and the longitude of the
ascending node respectively. The quantities 7,, and 6, are prescribed

constants.

The time element of the auxiliary ellipse is denoted by the symbol

z and often called the pseudo-time. When orbital true longitude is the 5
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. argument, the mean anomaly of the auxiliary ellipse is c(no)H z. The

symbol n, appears with different meanings in the articles of Brouwer

and Musen. Therefore the symbol (no) "

n, appearing in Musen's article.

pseudo-time from the unperturbed satellite time.

Ais adopted here instead of the

Osculating Elements for the Modified Hansen Theory

The quantity 8z is the deviation of the

By inverting equations (1) and (3) it is readily found that
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e =
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Similarly the quantities associated with the angular variables are

found to be

i+_P_E
| 2e, 2e e9,.... 3
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Comparison of Results to the First Order in J,,

By solving the equations given in Musen's article, first order
analytic solutions for the quantities E, T, ¥, and the A parameters were
obtained by Bailie and Fisher (1962). When the analytic expressions
for E, T, and ¥ are substituted into equations (5) immediate agreement’
is obtained with the periodic part of the elements G, e, and I obtained
in Brouwer's solution. Similarly, agreement for the periodic part of
the expressions for the angular variables w and € given by equation (4)

with the variables g and h can be readily obtained, when the analytic

results of Bailie and Fisher are introduced.

It has now been indicated that the périodic part‘of the solution of
the elements of the satellite problem by Brouwer and Musen agree to
the first order in J,,. Although differences in the arbitrary constants

and arguments of the trigonometric terms do exist, they do not appear

in the first order solutions for the trigonometric parts of the elements

since they have J,, as a multiplier. These differences are exhibited

in the terms of the second order and are discussed below.

The Arbitrary Constants of the Theories

Differences of order J,, appear in the arbitrary constants of the
Hansen type theory constants denoted by the symbols ¢, and ¢; in

Musen's article are added to the W function and consequently to = and
T. These constants thus occur in the solution for those elements derived

from & and T. In the solution by Brouwer constants appear which

.




Table L.
. Ta.ble I
Constants Appearing in the
Sat;llite Theories (order J,,)
Quantity ' Brouwer's Solution ’ ~ Musen's Solution
|
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' represent mean values, . In order to compare the two theories the con-

stants to the first order in Jo appearing in both theories are listed in
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The constants appearing in Table I are defined as follows

n = l1~-e

2 -
dl” 3Nk Ty
T T N "3 W(lf" 3cos? I"),.
- 3 0 ) o - "
c = .1 + 7 Jm-;;(l"-3cos‘2 ‘o) . L : ] | - | (7)
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h ' ‘ ,
132 o |
c, = z“‘;‘ ‘,'f;(l 3 cos? o)[4(1"_il"eo’)+ Ele“2 N 2e0z Y1 - eoz] .
These values are taken from the article of‘vBrouwer and from the

article of Bailie and Fisher.

-

The relations between the in:ean motions of the argument of perigee

and the longitude of the node in the articles of Brouwer and Musen are

g_iyeh by the formulas

dt

n

(no)ale-cl

dh” ' (8)
dat ("o)-n'_(l'h"

Formulas to order J 3"'0 for these mean motions are given in the

‘article of Brouwer and the article of\Bdiﬁ? ;a:;d Fiél;e:. ‘At first -
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sight the terms in Jz’o seem to disagree. However, by taking the re~- -
lationships given in Table I into account, full agreement is obtained to

order J :o in the mean motion of the variables as defined in equations

(8).

The differences in the constants given in Table I will also be ex-
hibited in the coefficients ofl‘t:rigonomet'i:i—c: terms of order J} in the

elements derived by the methods of Brouwer and of Musen. Additional

~ differences in the coefficients of trigonometric terins of order J2 ap-

pear, due to the differences in the arguments of the trigonometric

terms. These are now described.

The Time Elements of the Theories

In the method adopted by Brouwer the true anomalies f and f’ ap-

. péar. Brouwer then shows how to relate these true anomalies to the

- true time of the satellite, In the method adopted by Musen the true

anomaly of the auxiliary ellipse T or £ as it is denoted in the article ' -

by Bailie and Fisher appears. Musen shows how to relate fand the

true time. The'true anomalies of the two theories differ by trigonom-

etric terms of the order of Jy. The relation between these true

_ B . )
anomalies is now discussed. -

By Taylor's theorem for a function F of T we have to the first

order in J,,

#D = mn ¢ E(oe s
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where f = f-dand f osc i8 the value of the osculating true anomaly.

‘The quantity f ie  -. function of the osculating mean anomaly I, by the

equation ,
g{: = (1-e02) ‘3/2.(1 *eomf)

.also
af : . '
9e ~ (1""02).l (2""o°°s f) sin f

The quantity de is the deviation of the osculating 'ecce‘n'tricity from the

eccentricity of the auxiliary ellipse.

Let us consider the quantity Su = u-u appearing in M_\Jsen'é
article where u = 1/r and r is the radius vector of the satellite. In

‘equation (8) let us put qu,ft}ié}x if one substitut'ésf‘f—o.T ¢ and be of equa-

tions (8) their values in terms of 2, ;T, and ‘P gi\;en in equations (4) and

recalls that

W =\ E’:;l-l’"""'i’;‘césf +¥sing ,

s m——

to the first order in J,,, in agreement with the results given in the

modified Hansen theory. Thus we have another way of illustrating that -

8u is simply a formula t_'é_r transforming uas a function of f to u as 1 1

function of f. T Ce e o - .
o 1a S
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Equation (8) does not express T as a function of the true time of the
satellite. Such a transformation is usually accomplished with the aid

of the perturbation of the pseudo-time 8z .

~ The perturbation of the pseudo-time is expressed as an infinite
series and may converge slowly, particularly for large eccentricities.
An alternate method of expressing f in terms of true time can readily

- be found by extending equation (8) thus, o O
- SF A.af :
FIT) = FlE') + 5?(¢+ oL serom),

to the first order in J,,. Here f’ is the mean true anomaly in the
‘sense given in Brouwer's article and may be evaluated by Kepler's

equation for a given value of time.

The perturbation AM is the deviétion of the mean anomaly from its
- mean value. It may be found from the variation equation in terms of
- orbital true longitude by the methods adopted in the article of Bailie

and Fisher.

In particular, if FIT) = sinf, we have

sinf = sinf’' + cosf(¢+g{-6e+bu) .

The multiplier of cos'f is of order J,,, so that when f' is giir_en T may

,+ be found by successive approximations. .

9

11




Summary and Conclusions

The solutions to the problem of the near earth satellite without
drag given by Brouwer and by Musen agree when carried out to the
same order in Jzo . Due allowance must be made for the differences

in the constants and in the ways of expressing the time element. .

The differences of the arbitrary constants are tabulated to the

first order in J,,. Transformations are given refating the true anomaly

of the auxiliary ellipse to the true timé of the satellite.
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